metricDTW: local distance metric learning in Dynamic Time Warping

نویسندگان

  • Jiaping Zhao
  • Zerong Xi
  • Laurent Itti
چکیده

We propose to learn multiple local Mahalanobis distance metrics to perform knearest neighbor (kNN) classification of temporal sequences. Temporal sequences are first aligned by dynamic time warping (DTW); given the alignment path, similarity between two sequences is measured by the DTW distance, which is computed as the accumulated distance between matched temporal point pairs along the alignment path. Traditionally, Euclidean metric is used for distance computation between matched pairs, which ignores the data regularities and might not be optimal for applications at hand. Here we propose to learn multiple Mahalanobis metrics, such that DTW distance becomes the sum of Mahalanobis distances. We adapt the large margin nearest neighbor (LMNN) framework to our case, and formulate multiple metric learning as a linear programming problem. Extensive sequence classification results show that our proposed multiple metrics learning approach is effective, insensitive to the preceding alignment qualities, and reaches the state-ofthe-art performances on UCR time series datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convolutional Nonlinear Neighbourhood Components Analysis for Time Series Classification

During last decade, tremendous efforts have been devoted to the research of time series classification. Indeed, many previous works suggested that the simple nearest-neighbor classification is effective and difficult to beat. However, we usually need to determine the distance metric (e.g., Euclidean distance and Dynamic Time Warping) for different domains, and current evidence shows that there ...

متن کامل

Adaptive Feature Based Dynamic Time Warping

Dynamic time warping (DTW) has been widely used in various pattern recognition and time series data mining applications. However, as examples will illustrate, both the classic DTW and its later alternative, derivative DTW, may fail to align a pair of sequences on their common trends or patterns. Furthermore, the learning capability of any supervised learning algorithm based on classic/derivativ...

متن کامل

Optimal Current Meter Placement for Accurate Fault Location Purpose using Dynamic Time Warping

This paper presents a fault location technique for transmission lines with minimum current measurement. This algorithm investigates proper current ratios for fault location problem based on thevenin theory in faulty power networks and calculation of short circuit currents in each branch. These current ratios are extracted regarding lowest sensitivity on thevenin impedance variations of the netw...

متن کامل

Dynamic State Warping

The ubiquity of sequences in many domains enhances significant recent interest in sequence learning, for which a basic problem is how to measure the distance between sequences. Dynamic time warping (DTW) aligns two sequences by nonlinear local warping and returns a distance value. DTW shows superior ability in many applications, e.g. video, image, etc. However, in DTW, two points are paired ess...

متن کامل

Dynamic Time Warping and Geometric Edit Distance: Breaking the Quadratic Barrier

Dynamic Time Warping (DTW) and Geometric Edit Distance (GED) are basic similarity measures between curves or general temporal sequences (e.g., time series) that are represented as sequences of points in some metric space (X, dist). The DTW and GED measures are massively used in various fields of computer science and computational biology, consequently, the tasks of computing these measures are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1606.03628  شماره 

صفحات  -

تاریخ انتشار 2016